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A Frequency Transformation for Commensurate

Transmission-Line Networks

EDWARD G. CRISTAL, SENIOR MEMBER, IEEE

Abstract-Tbe frequency transformation W=I/S, where S= taah(yL),

is investigated for commensurate transmission-line networks consisting of

stubs, resistors, ideal transformers, and unit elements. This transforma-

tion takes transmission-line transformers into transmission-line lowpass

filters and vice versa, Iowpass (or bandstop) filters into bighpass (or band-

pass) filters and vice versa, and elliptic-function bandstop flters into

elliptic-function bandpass filters and vice versa. The practicality of the

transformation lies in the fact that element values of the transformed net-

work are easily related to the corresponding element values of the original

network. The transformation is useful because it provides an alternative

viewpoint for synthesis, and because it reduces the number of tables of

designs needed for various tilter types. Several examples of designs using

the transformation are given. One design is an unusual rtarrowband 3-dB

directional coupler.

I. INTRODUCTION

F

REQUENCY transformations are commonly used in

lumped-element network theory to convert a given

filter network into a related filter network. For exam-

ple, an often used frequency transformation is [1], [2]

S1~ As, (1)

where the symbol ~ stands for “is replaced by,” A is a
constant, the primed variable is that of the original network,

and the unprimed variable is that of the transformed net-

work.1 Transformation (1) is used to scale the bandwidth of

Manuscript received September 21, 1966; revised December 22,
1966. The work reported in this paper was supported by the U, S. Army
Electronics Command Laboratories, Fort Monmouth, N. J., under
Contract DA-28 -043-AMC-02266(E).

The author is with the Stanford Research Institute, Menlo Park,
Calif.

1Throughout this paper we shall use primed variables to represent
parameters of the original network and unprimed variables for those in
the transformed network.

the existing network to another preferred value. Other com-

monly used frequency transformations in lumped filter

theory are [I], [2]

(lowpass to highpass
St ~ A/s

(2)

transformation)

“+”(3+(-3(lowpass to bandpass (3)

transformation)

St -+ “(:;+()
(Iowpass to bandstop

@o
(4)

— transformation).
s

It is emphasized that in all cases the usefulness of these trans-

formations lies in the fact that their effects on the responses

of the network are easily related to changes in the element

values of the network. Because such frequency transforma-

tions are available, a given Iowpass filter may function as a

prototype for a number of different types of filters, obviating

the compilation of a multitude of designs for lowpass, high-

pass, bandpass, and bandstop filters.

Analogous transformations would be equally useful for

commensurate transmission-line networks, if they could be

developed. For the special class of commensurate transmis-

sion-line networks consisting of open- and short-circuited

stubs, ideal transformers, and resistors, but without unit

elements [18 ] (i.e., quarter-wavelength lines), transforma-

tions (1) through (4) can indeed be used. In most cases, how-

ever, realization of commensurate transmission-line net-

works without unit elements is impractical or impossible.

Unfortunately, in the more general case of commensurate
transmission-line networks, consisting of open- and short-

circuited stubs, ideal transformers, resistors, and unit ele-
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ments, the usual frequency transformations of lumped-

element network theory cannot be used. The fundamental

reason for this is that for transmission-line networks with

unit elements, the effects of the transformations on the net-

work responses are not easily (if at all) related to changes in

the element values of the network. However, an exception

to this statement is the frequency transformationz

s’+ 1/8. (5)

It has been found that for this transformation the effects on

the network elements can be relatively easily accounted for.

This transformation corresponds to (2), with xl= 1, and

possesses corresponding properties. However, its effects on

the parameters of transmission-line networks can be sub-

stantially different from the effects on the parameters of

lumped-element networks because of the existence of unit

elements. It is easily shown that transformation (5) takes

transmission-line filters into transmission-line transformers

and vice versa, lowpass distributed filters into highpass dis-

tributed filters and vice versa, elliptic-function bandstop

distributed filters into elliptic-function bandpass distributed

filters and vice versa. Sections II through IV investigate the

properties of transformation (5) and describe the relation-

ships between the original and the transformed networks.

Section V explores possible applications to which the trans-

formation may be put.

II. THEORY

The general analytical properties

formation

of the complex trans-

Sf -+ 1/s = w, (6)

which represents the inversion of the unit circle in the com-

plex plane, are not of particular interest in the present case.

The interested reader may find these details in various refer-

ences [4], [5]. Certain specific properties, however, should

be pointed out. On the real frequency axis, the variable

w=l/s=–jcoto (7)

satisfies

–jcot 0 = jtan (0 – 90), (8)

where 6’ is the electrical length of the commensurate trans-

mission lines and j= <nl. Thus transformation (6) is

equivalent to shifting the origin 90° to the right for all net-

work functions. The result of the translation can be seen to

be, for example, that response functions of lowpass (or band-

stop) networks become response functions of highpass (or

bandpass) networks. This is illustrated by the insertion-loss

functions shown in Figs. l(a) and l(b). Similarly, the re-

sponse functions of stepped-impedance filters are trans-
formed into the response functions of stepped-impedance

transformers; those of short-step transformers [6] are

transformed into the response functions of different short-

ZFor commensurate transmission-line networks, the variable S’
represents tanri(VL), where T is the complex propagation constant and
L is the commensurate length of the transmission lines [3].

(b).

11u
-90 0

89- oe~
180 270

(a). Lowpass (or bandstop) attenuation response.

,

@— dq

Highpass (or bandpass) attenuation response obtained by trans-
forming the response of Fig. l(a) by the mapping S’ = 1/S.

Fig. 1.

step transformers; and those of bandstop elliptic-function

filters [7]-[9] are transformed into the response functions of

bandpass, elliptic-function filters.

Note in Fig. 1 that a narrowband bandstop filter response

transforms into a wideband bandpass filter response. Similar

results are obtained for quarter-wavelength transformers and

elliptic-function filters. The transformed bandwidths of

short-step transformers [6], on the other hand, behave differ-

ently. The general relationships between bandwidths of

original and transformed networks are derived later in

Section III; for the present, let us consider the general rela-

tionships between the electrical parameters of the original

and the transformed networks.

A. Networks of Only Commensurate Unit Elements

We consider first networks consisting of only unit ele-

ments, such as those represented in Fig. 2. Such networks

may represent stepped-impedance transformers, lowpass

filters, and prototype networks for directional couplers and

other filter types [10], [11 ]. Let the original network be

referred to as the S’-plane network and the transformed net-

work as the W-plane network. Also, let impedances in the S’

plane be primed and those in the W plane be unprimed.

Next, let an S’-plane network of unit elements be repre-

sented by the drawing of Fig. 3(a), so that the first unit ele-

ment is placed in evidence. The corresponding W-plane net-

work, yet to be determined, is similarly shown in Fig. 3(b).

The input impedance for the S’-plane network3 is

{

ZL(S’) + S’zl’
Zi.(S’) = Z1’ 1Z1’ + S’z.(s’) “

(9)

3 Input impedances (admittances) in the S’ plane will be denoted
with a bar. Input impedances (admittances) in the W plane will be
denoted without a bar.
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Fig. 2. A transmission-line network of commensurate unit elements,

z;
0 I

To-f—u
iin(S’) ~’(s’)

(a). General network of commensurate unit elements in the ,S’ plane.
with the first unit element in evidence.

z,
0 I I

F--F--u
Zj~ (W) z~(w)

(b). General network of commensurate unit elements in the W plane,
with the fist unit element in evidence.

Fig. 3.

By (6), the impedance in the W plane is the same function

Zin, but in the variable W; hence

{

ZL(W) + Wzl’
Zi.(W) = 2/

}2{ + WZ.(W) =
Zin(fi’) ]~,=~. (lo)

However, from first principles we know that the network of

Fig. 3(b) can also be represented by the equation

WZL(J’V) + z,
Zi.(W) = ZI

?’vZ, + z.(w) ‘
(11)

where the impedance of the unit element 21 and the imped-

ance ZL( W) are yet to be determined. Using Richard’s

theorem [3],

Next, using Richard’s reduction procedure

unit elements,4 we find that

S“2/ – Zi.(LS”)
ZL(S’) = Z1’

{ }S’Zi.OS’)– Z1’ =

(14)

[3] for removing

Z,’G(s’), (15)

4 A factor 1—(S’)2 cancels in the numerator and denominator of
(15) but is not shown herein order to keep the presentation simple. A
similar procedure applies for a factor 1–Wzin(16).

where the definition of G(S’) is clear from (15). Similarly,

from (11)

ZL(W) = 21
ZI – ?VZi.(T’V)

Zi.(ii”) – WZ~ “ (16)

However, since 21=2!, (16) is equivalent to

ZL(W) = Z//@V), (17)

where the function ~ in (17) is the same as that in (15) with

S replaced by W. Combining (15) and (17) gives the result

Z@) - (Z/) ’/Z@) IS,=w. (18)

The identity symbol in (18) is used to convey the meaning

that the functions on the left and right are identical but de-

noted in different variables. In words, (18) states that the

impedance function remaining in the W plane after removing

the first unit element is mathematically the same as the ad-

mittance function remaining in the S plane scaled by the

factor (2/)2.

Next, steps (12) and (13) are repeated, with ~i.(ii”) re-

placed by ~L(~’) and Zi.(W) replaced by ZL(W)= (Z~)2

/~L( W). We obtain for the second unit element in the S

plane,

22’ = ZL(8’) ]s)=, (19)

and for the second unit element in the W plane,

22 = ZL(W) IW=l = (2:) Z/zL(w) W=l = (2;) 2Y2’. (20)

Again using Richards’ reduction procedure, the remaining

impedance in the W plane is determined to be

ZL,(?V) = (Z;)2(Y2’)2ZL2(S’) lw=w. (21)

Thus, at the end of the second cycle of determining the im-

pedances of the W-plane network, the impedance function in

the W plane has returned to its original form [i.e., Zin( W)

= ~i.(S’)] except for a scale factor. A continuation of the
previous procedure gives, for the impedance in the W plane,

alternately ~(S’) and ~(S’), scaled by the appropriate fac-

tors. The general relationships between corresponding im-

pedances in the S and W planes are thus

21 = [(Z{) ( Y;) (2s’) . . . ( Y/_l)]zZ/ for ~ odd, (22)

and

Z; = [(Z{) ( Y,’) (ZS’) o . . (2/-,) ] 2Y; for i even. (23)

Equations (22) and (23) are equivalent to formulas for de-

signing half-wave filters from quarter-wave prototype

transformers [12]. We see from the previous discussion,

however, that these equations are completely general. They

apply to any arbitrary cascade of commensurate transmis-

sion lines, with the consequence that the network responses

in j tan 0 are replaced by the same responses in —j cot 6.

To illustrate an application of the foregoing theory, con-

sider the following example of the transforma~ion of a two-

section short-step transformer [6] of the following specifica-

tions:
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8— deq

(a). Attenuation response of two-section short-step transformer from
the tables of Matthaei.

‘~

“o 30 60 I20 150 180

Rag

(b). Attenuation response of the transformed short-step transformer
under the transformation S’= 1/S.

Fig. 4.

Fractional bandwidth w’ = 1.2

Termination ratio

Passband ripple

Termination

The attenuation response of

r =2:1

LA,’ = 0.39 dB

Z; =2.1956

z; =0.91091

R~ = 2.0.

this transformer is given in

Fig. 4(a), and the transformed attenuation respons~ in the

variable 1/S is given in Fig. 4(b). The response shown in Fig.

4(b) implies that the short-step transformers go into other

short-step transformers under the transformation S’- 1/S.

Thus, in some cases, the transformation (6) maybe useful in

extending Matthaei’s tables, although no statement can be

made as to the generality of this particular application.

The transformed impedances in the W plane are calcu-

lated from (22) and (23), giving

ZI = 2.1956

Z, = (2:)2 Y,’ = 5.2921

RL = [(2<) (YZ’)]2R~’ = 11.619.

For this example the new termination ratio is seen to be

11.619; and the new 0,39-dB fractional bandwidth, deter-

mined from the data of Fig. 4(b), has been reduced to the

value w= 0.403. Thus the resulting network is indeed another

short-step transformer. 5 To confirm these results, the re-

sponse of the W-plane network was calculated with a digital

computer and was found to agree with the response given

in Fig. 4(b).

B. Distributed Networks of Stubs, Unit Elements, Ideal

Transformers, and Resistors

The previous theory, developed for cascaded commensu-

rate unit elements, is extended in this section to networks

consisting of stubs, unit elements, ideal transformers, and

resistors. The technique for developing the transformed net-

work from the original network follows closely the concepts

presented in Section II-A. In order to facilitate the descrip-

tion of the method, however, it will be useful to digress

momentarily to examine the mathematical form of the

immittances of stubs in the variable W.

Four diagrams of open- and short-circuited stubs, in

series and in shunt with general networks, in both the S’

and W planes, are given in Fig. 5. By referring to this figure

during a network transformation problem, one can quickly

determine the type of stub called for in either the S’ or W

plane. For example, assume that in a filter transformation

problem, the impedance function

Zi.(W) = 25.6W + Z(W)

occurs. Reference to Fig. 5(b) shows immediately that the

network is an open-circuited stub of characteristic imped-

ance 25.6 ohms in series with a residual network having in-

put impedance 2(W).

The method of transforming a given network in the S’

plane into another network in the W plane will be explained

by means of a worked example. After the example has been

given, certain general statements will be made that will en-

able a designer to transform one network into another

without recourse to most of the mathematics presented dur-

ing the description of the worked example. The example is

the transformation of a five-resonator bandstop filter, hav-

ing fractional bandwidth w’= 1.00 and 0,1 -dB Chebyshev

ripple in its passband, into a bandpass filter. The bandstop

filter is shown schematically in Fig. 6 with n = 5. Normalized

values for network admittances h are given in reference [13].

The transformed network is developed in the following way.

The input admittance of the bandstop filter seen from the

left side of Fig. 6 is

T,n(tl’) = h~fl’ + l?~(fl’), (24)

where Y1(S’) is the admittance remaining to the right of the

first stub, Y~.G Therefore, at the corresponding reference

5 Because of the small termination ratio of the original transformer
(i.e., 2: 1), the transformed network will have only a 0.5-dB insertion
loss at o= 90°. Thus for this case the transformed network also repre-
sents a conventional transformer with termination ratio r= 11.62,
0.5-dB equal-ripple response, and fractional bandwidth 1.64. However,
this situation occurs only when the original short-step transformer con-
sists of two sections and small termination ratio.

s For this example, input adrnitances in the S’ plane will be denoted
with a bar. Input admittances in the W plane will be without a bar.
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plane, the transformed network in the W plane has the ad-

mittance [set S’= Win (24)]

Yin(W) = ~1~ + ~1(~). (25)

Reference to Fig. 5(c) shows that this admittance may be

represented by a short-circuited stub of characteristic ad-

mittance

HI = hl (26)

in shunt with a residual network of input admittance ~@l

The input admittance in the W plane, Yl( W), evidently

satisfies

Y,(w) = 7,(8’) ]w=rv (27)

where again, the identity sign is used to emphasize the fact

that the functions on the right and left of (27) are identical.

Now ~,(S’) is the admittance seen when looking to the

right of the first stub of the bandstop filter. This admittance

is a unit element of characteristic admittance Izla terminated

in a load which will be designated as ~a(S’). Since Yl(W)

= ~1(51), in the W plane we also have a unit element ter-

minated in a residual network. At this point in the develop-

ment of the transformed network, the situation is exactly

as that described in Section II-A. Hence, the unit element in

the W plane is evaluated using the procedures in Section

II-A, giving

Hlz = hlz. (28)

Also, by the methods described in Section II-A [in particu-

lar (18)], the input impedance of the residual network in the

W plane satisfies

or

Z,(W) = T,(tY)/hu2 Is=w. (29)

In words, (29) states that the input impedance of the remain-

ing network in the W plane is mathematically equivalent to

the input admittance of the remaining network in the S’

plane, scaled by the factor l/h,,2, and with S’replaced by W.

The development of the transformed network continues

from (29). The input admittance in the S-plane network is

seen (from Fig. 6) to be an open-circuited stub in shunt with

a residual network, designated by T3(S’). Hence

~,(S”) = h,S + ~,(fl’). (30)

Thus from (29) we have

73(W)
Z2(W)=3W+—.

h112
(31)

Reference to Fig. 5(b) shows that 2,(W) maybe represented

by an open-circuited stub in series with a residual network

7The characteristic admittances in the W plane will be denoted
by H.

having an input impedance, designated as Z,(W), which

satisfies

(32)

The characteristic admittance of the open-circuited stub is

H,=~. (33)

Further development of the transformed network con-

tinues along similar lines. The admittance ~s(S’) is seen to

be that of a unit element of characteristic admittance has,
terminated in a residual network designated as TA(S’). There-

fore, by (32), in the W plane the corresponding network may

also be represented by a unit element terminated in a residual

network. The evaluation of the unit element is

1 73(W) h,,
— = 23(W) = —

—
— . (34)

H23 W=l hlaz – hlzzW=l

By the arguments put forth in Section II-A, the residual

network in the W plane, having input impedance 21(W),

satisfies

h,s2Z,(S’)
24(W) = .

hla2 S’=w

(35)

In words, (35) states that the input impedance of the residual

S’ PLANE
I

w PLANE

&Zos’

J-

,. z[<)
z,”(s)= z. S’+Z(5

(01 SERIES SHORT-

Zki3zo/vi

Zlw)
z,”(w)= zo/w+z (w)

-CIRCUITED STUB

;J~~~

Z,n(s’l z (4) I Z,n(w z(w)

Z,”(s’)=z,Ji+ z (s) z,”(w)=Zow+ z(w)

(b) SERIES OPEN-CIRCUITED STUB

Y,n(s’)=Yo/$+Y(4 Y,”(w)= Yow + Y(W1

(cl SHUNT SHORT-CIRCUITED STUB

FrY,”(s’) Y(s)

Y. s
Y,”(S’)=YO i + Y(s) Y,”(w) = Ye/w + Y(w)

[d) SHUNT OPEN-CIRCUITED STUB

Fig. 5. Four diagrams of open- and short-circuited stubs and their
mathematical forms in the S’ plane and W plane.
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Y;

/

t &

Y’n+ Y;

---

G:= ho Y12 Y~3 Y~-l,n
G~+l= hn+l

. . .

Y/=hi ,Y/i+l =hi i+l
, 9

Fig. 6. Schematic drawing of transmission-line bandstop filter.

%=d-7’---
Y2 Y4

Y45 N:l

Y23

/1,

G
OJ+I

=HN+l

Yi = Hi , Yi,i+l =Hi, i+l

Fig. 7. Transmission-line bandpass filter developed from a bandstop filter using the frequency transformation .S’= 1/S.

network in the W plane is mathematically equivalent to the

input impedance of the residual network in the S’ plane,

scaled by the factor h232/h122,and with S’ replaced by W.

At this stage in the development of the transformed net-

work, the mathematics of the synthesis method has returned

to the starting point (24), except for a scaling factor h232/h122.

The development of the remainder of the network follows

the same cycle that has just been described. The procedure

is carried on by inverting (35) to obtain the input admittance

and following the steps beginning with (24).

A schematic of the final transformed network is given in

Fig. 7. Note that an ideal transformer is required at the

right side of the network. This is because, after development

of the last stub in the transformed network, the residual re-

sistance satisfies

RL(W) = h,,-~h232h34-’h46’RL(s’) ]S’=w (36)

where RL(S’) = l/#zn+l. Hence the coefficient of RJS’) in (36)

corresponds to an ideal transformer, as shown in Fig. 7,

with turns ratio

N = h12–1hz3h34–1h45. (37)

In terms of the normalized admittance parameters of the

original network, the normalized admittance parameters of

the transformed network are

36

32

28

24

%

I
20

a“

16

12

8

4

40

I 8—dq

EXPANDED oRDINATE Ii

0 ~!+I I I ! 1 1 ! i [ 1 I , 1
20 30 40 50 60 70 80 90 100 110 120 130 140 150 160

353

0 — deg

Fig. 8. Attenuation response of the transformed bandstop network
eiven as an examule in the text.
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HI = hl

HIZ = h]z

Hz = h,z2/hz

H!23 = hn2/hz~

H3 = hlz2h2,s-2hs

H34 = hnzhzs-zhw

H4 = hlz2hx2hsh2/hh

H4K = hn2hzs-2hw2hhrj-1

H5 = hlz2hzs–2hu2hk5-2h5

N’ = h12-2hza2hs4-2h152

He = h~. (38)

For the particular example just illustrated, the h parameters

of the original network satisfy certain symmetry conditions

[13] which, when taken into account, reduce (38) to ,

Hl=h1=H5

HIZ = hlt = H45

Hz = hlz2/hz = H4

H23 = hlz2/hn = H34

H3 = hJhzs-2hs

N=l

HO = he. (39)

In order to verify the results given in (39), the network

given in Fig. 7 was analyzed on a computer using the rela-

tionships in (39) and the numerical data from reference [13].

The calculated insertion-loss function is shown in Fig. 8, and

it has been verified that this is the same insertion-loss func-

tion of the original bandstop filter, with S’ replaced by W.

A brief review of the previously described transformation

procedure reveals a pattern that makes it unnecessary, in

most cases, to perform any of the previously outlined mathe-

matical steps. With a little practice, one can write down the

parameters of the transformed network by inspection. Note

that the requirement to renormalize and invert the residual

network immittance arises only after the removal of each

unit element. The removal of stubs, ideal transformers, and

resistors leaves intact the form of the residual network. Thus

the transformation of a given network by the mapping

S’+ W can be accomplished as follows.

Unit elements in the transformed network are developed
according to the rules given in Section II-A, without regard

to the presence of stubs. The development of stubs in the

transformed network is divided into two cases:

1) If an odd number of unit elements has been developed,

2)

shunt open- or short-circuited stubs are transformed

into series open- or short-circuited stubs (and vice

versa), respectively, with appropriate immittance scal-

ing.

If an even number of unit elements has been developed,

shunt open- or short-circuited stubs are transformed

MICROWAVE THEORY AND TECHNIQUES, JUNE 1967

into shunt short- or open-circuited stubs, respectively,

with appropriate immittance scaling; and series open-

or short-circuited stubs are transformed into series

short- or open-circuited stubs, respectively, with appro-

priate immittance scaling.

The “appropriate immittance scaling” referred to in 1) and

2) requires the factor (in terms of impedance)

and

where Zj’

spectively,

[Z/ Y2’Z3’ . . . ZJ]Z for i odd, (40)

[Z; Ys’Z~ . . . Y/]z for i even, (41)

and Yj’ are the impedance and admittance, re-

ef the jth unit element of the S’-plane network.

C. Application to Distributed Elliptic-Function Filters

The theory presented in Sections II-A and II-B may also

be applied to elliptic-function filters [7]-[9]. In the general

case, elliptic-function filters may contain unit elements,

shunt and series open- and short-circuited stubs, distributed

LC shunt and series resonant and antiresonant sections, and

distributed nondegenerate Brune sections.g Networks of unit

elements and stubs have been discussed in Section II-B,

Where circuit elements of the network are LC series and

shunt resonant and antiresonant circuits, the extension of the

theory is straightforward. For example, if an even number

of unit elements has been developed in the transformed net-

work, a shunt, LC series resonant circuit will be transformed

into another shunt, LC series resonant circuit with the im-

pedance level appropriately scaled. On the other hand, if an

odd number of unit elements has been developed in the

transformed network, a shunt, LC series resonant circuit

will be transformed into a series, antiresonant circuit with

the impedance level appropriately scaled. Extension to other

types of LC circuits is obvious.

Application of the theory to Brune sections reveals that

a Brune section transforms into another Brune section.

Again, there are two cases to consider, depending on whether

an even or odd number of unit elements has been developed

in the transformed network. The transformation of a Brune

section after an odd number of unit elements has been de-

veloped is shown in Fig. 9(a). In this figure, and also in Fig.

9(b), the S’-plane Brune section is shown in the T-section

form. This is easily related, by elementary transformations
[14], to the form which uses unity-coupled coils. The re-

quired impedance scaling factors have been neglected in the
figures and must be supplied in the actual application. The

particular form of the transformed Brune section shown in

Fig. 9(a) has been given by Guillemin [14]. Other equivalent

circuits are possible, but they are not presented here. The

transformation of a Brune section after an even number of

unit elements has been developed is shown in Fig. 9(b).

8 In the present context L represents the characteristic impedance of
a quarter-wave short-circuited transmission line, and C represents the
characteristic admittance of a quarter-wave open-circuited transmission
line.
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L, L2

LIZ= L2 –Ll

(L2-L,)2
N,<; L.—

L2 q ~12

~=---L
L2-LI

(a). Transformation of a Brune section after an odd number of unit
elements has been developed. (Impedance scaling has been neglected.)

L, L2

LIZ= L2- L,

(b). Transformation of a Brune section after an even number of unit
elements has been developed. (Impedance scaling has been neglected.)

Fig. 9.

III. BANDWIDTH FORMULAS

The effect of the transformation S“+1/S on bandwidth

can be determined using (8). Let 02’ and 61’ be the upper and

lower bandedges, respectively, of a given network response

in the S plane. Let the fractional bandwidth of the network

be defined as

02’– 01’
W’=2

e,’ + 0/

There are two cases to consider:

Case 1: Both 02’ and&’ lie between O and 90°.9

Case 2: 02’= 1800–0/.

Case 1

(42)

Under the transformation S’+1/S, the new bandedges are

02 = 90” – 01’,

01 = 90° – 62’.

Therefore, in the W plane the fractional bandwidth

‘=2{s1‘2-km%’L’J
which reduces to

90°
~+~=—-”
w’ w 0.2’ – 01’

is

(43)

(44)

g An example of a Case 1 network is the short-step transformer [6].

Case 2

Under the transformation S’+1/S, the new bandedges are

02 = 90° + L%’,

01 = 0,’ – 90°.

Therefore, in the W plane the fractional bandwidth is

‘=2 K+} ‘2 f80i!t?P’)} ‘ ’45)

which reduces to

W+ W’ =2. (46)

IV. FOUR THEOREMS FOR SYMMETRICAL

AND ANTIMETRICAL FILTERS

Define a symmetrical filter as one with impedances that

satisfy

Z;+l_i = r’zi’, (47)

where 2/ is the impedance of the ith stub or unit element

normalized to the generator resistance, n is the total number

of stubs and unit elements in the filter, and r’ is the ratio of

termination to generator resistance. Define an antimetrical

filter as one with impedances that satisfy

(48)

Then the following four theorems can be stated:

Theorem 1: Under the transformation S’+1/S, a sym-

metrical filter having M unit elements, where M is even,

goes into another symmetrical filter with respect to the trans-

formed normalized load r. The transformed normalized

load r is equal to r’ if M/2 is even, and is equal to l/r’ if

M/2 is odd.

Theorem 2: Under the transformation S’-+1/S, a sym-

metrical filter having M unit elements, where M is odd, goes

into an antimetrical filter with respect to the new normalized

load r. The normalized load r sa;isfies

(1. = 21? y2f,z3’ . . . “WY’%Y
for [(M+ 1)/2] even, and

(
Y’1f–1 4 Z’M+l 2

r = 21’ y2fz3t . . . —

2 )(-) 2

for [(M+ 1)/2] odd.

The notation 2/ represents the jth unit element

S’-dane network.

(49)

(50)

of the

.
Theorem 3: Under the transformation S’+1/S, an anti-

metrical filter having M unit elements, where M is odd, goes

into a symmetrical filter. The transformed normalized ter-
mination r is unitv for all cases..
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Theorem 4: Under the transformation S’-+1/S, an anti-

metrical filter having M unit elements, where M is even, goes

into another antimetrical filter with respect to the new

normalized termination r. The normalized termination r

satisfies

for M/2 odd, and

( YM’ 4,
r = Zlf y2f~3f . . . )Tr

(51)

(52)

for M/2 even.

It is emphasized that the preceding theorems are based

only on the number of unit eIements in the filter and depend

in no way on the number of stubs, transformers, or resistors.

V. APPLICATIONS

A. Extension of Chebyshev Transformer Tables

A potential application for the transformation S’-1/S is

the extension of Chebyshev transformer tables [12] by using

Levy’s tables for distributed lowpass filters [11], Published

tables of exact designs of Chebyshev transformers [12] are

presently limited to four sections and impedance ratios of
<100. Although the range of impedance ratios covered is

probably adequate for most applications, it would be useful

to have tables for larger numbers of sections. Levy’s tables

of distributed filters may be useful for this purpose in some

instances.

For example, suppose it is required to match into a net-

work over a 3:1 bandwidth, i.e., w’= 1.0. Let the input im-

pedance of the network be 15 times the source impedance,

and let it also be required that the VSWR of the match be

<1.05. A 15:1 impedance mismatch ratio corresponds to a

maximum insertion loss of 6.28 dB. Therefore, upon scan-

ning the tables of distributed lowpass filters [11] for a design

with a maximum insertion loss of 6.3 dB and a passband

VSWR of 1.05, it is found that a five-section filter is required.

This particular filter has 6.22-dB insertion loss, which cor-

responds to an impedance mismatch of 14.6:1. The band-

width of this filter is w’= 0.9. By (46), the bandwidth of the
transformed network will be w= 1.1, which fulfills the re-

quirements. The impedances of the transformed network

can be calculated from (22) and (23), giving

z, = 1.193

Z, = (1.193)2/(0.7481) = 1.902

z,= (1.193) ’(1.507)

(0.7481)2 = 3’832

14.6
Z4=—= 7.676

z,

Similar methods are also applicable to the tables of short-

step transformers [6], as shown by the example given in

Section II-A.

B. Development of Narrowband Directional Coupler

From time to time, technical problems arise in which nar-

rowband directional couplers prove to be more useful than

wideband directional couplers. In the following example a

narrowband 3-dB (approximately) directional coupler is

developed using the transformation S’~1/S. The stepped-

impedance TEM directional coupler has been shown to be

mathematically equivalent to the stepped-impedance filter

terminated in a l-ohm resistor [15], [16]. The reflection

coefficient and the insertion loss of the stepped-impedance

filter correspond to the coupling and transmission, respec-

tively, of the directional coupler. A 3-dB directional coupler

thus corresponds to a stepped-impedance filter with 3-dB

insertion loss. On the other hand, under the transformation

S’~1/S a stepped-impedance filter with 3-dB insertion loss

corresponds to a transformer with 5.83:1 termination ratio.

The tables of transformer design [10] give the following im-

pedance values for a three-section transformer with termina-

tion ratio 6:1 and fractional bandwidth w’= 1.2:

Z; = 1.58676

Z; = 2.4495

Z; = 3.78129.

Transforming these impedances according to (22) and (23)

gives the following impedance values of the stepped-imped-

ance filter. These impedances are also the even-mode

impedances of the directional coupler [19].

ZI = 1.58676 = Zo-,ve.l

Zz = 1.02789 = ZO_7.D,

Z3 = 1.58676 = Zo-,...,.

Note that an unusual feature of this 3-dB coupler design is

that the tightest coupling is at the ends of the coupler, as

contrasted to the middle in conventional designs.1’J The

coupling of the ends is

212 _ 1

coupling = 20 log10
{}2,2 + 1

1.51

{1
= 20 loglo — – 7.30 dB.

3.51 =

Thus a second unusual feature of this design is that the

tightest coupling is less than the overall coupling of the

coupler. Important also is the fact that since the tightest

coupling is only —7.3 dB, this coupler should be relatively

easy to construct. The coupling response is shown in Fig. 10.

The peak coupling is – 2.92 dB, and the 3-dB fractional

bandwidth has been determined from the data to be w = 0.233.

14.6
z5=— = 12.23.

Z3 10Since the even-mode impedances 23 and 21 are greater than 22.
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0 30 60 90 120 1s 180
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Fig. 10. Coupling response of 3-dB directional coupler designed using
the transformation S“ = 1/S.

C. Transformation of Bandstop Filters into Bandpass Filters

Perhaps the most general application of the transforma-

tion S’+1/S will be the transformation of bandstop filters

into bandpass filters (and vice versa). This application will

realize a saving of 50 percent in the compilation of filter-

design tables. For example, the existing tables of bandstop

filters [13] are easily transformed into tables for bandpass

filters. This was done for a limited number of cases in order

to gain an impression of the impedance levels of the result-

ing bandpass filters. It was found that for a representative

case (a five-stub filter with 1.2 VSWR ripple in the pass-

band) the transformed impedances lay in the range 10 to 250

ohms over fractional bandwidths of 0.8 to 1.5. For band-

widths less than 0.8 or greater than 1.5, special methods of

design (such as use of additional redundant unit elements)

[17] will be required for practical realizations.

It should be pointed out that for filters having lumped-

element prototypes [13], it is not necessary to use the trans-

formation S’~1/S on the transmission-line filter. One can

apply it to the lumped-element prototype as well, utilizing

Kuroda’s identities to realize the transmission-line filter.11

It is most important to note, however, thatfor the classes of

jilters having no lumped-element prototype (such as are repre-

sented by the insertion-loss functions given in reference [17]),

tran~ormation from bandpass to bandstop (or vice versa) can

be accomplished only by the techniques given in Section II or

by exact synthesis methods.

VI. CONCLUSIONS

A theoretical study has shown that the frequency trans-

formation S’+ 1/S ,when applied to commensurate trans-

mission-line networks of stubs, unit elements, ideal trans-

formers, and resistors, may be easily related to changes in

the impedance values of the network parameters. In most

cases, both the form and the element values of the trans-

u However, in many cases, it will probably be faster to use the com-
putational algorithm [13 ] in designing the corresponding bandstop
filters, or the tables [13], and then convert the design to a bandpass
filter by the transformation S’+1)S.

formed network may be written down from inspection. Be-

cause of the generality of the transformation, only a few

examples could be illustrated in the present paper. However,

the fundamental transformation technique applies to a wide

variety of situations. The transformation will probably be

most useful in reducing the number of design tables required

for frequently used filter designs, However, in some cases it

may also be helpful in extending existing tables of designs.

Knowledge of the transformation also provides an alterna-

tive viewpoint to various network synthesis problems, as

exemplified by the design of the narrowband 3-dB direc-

tional coupler. Also, for some network synthesis problems

it may prove useful to work in the W plane rather than the

S’ plane and then transform the resulting network. For

example, retention of significant figures in an electronic

digital computer may be a problem in synthesizing narrow-

band bandpass filters, but it may not be a problem in

synthesizing wideband bandstop filters. Thus the latter could

be accomplished and the network transformed thereafter.
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