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A Frequency Transformation for Commensurate
Transmission-Line Networks

EDWARD G. CRISTAL, SENIOR MEMBER, IEEE

Abstract—The frequency transformation W=1/S, where S =tanh(yL),
is investigated for commensurate transmission-line networks consisting of
stubs, resistors, ideal transformers, and unit elements. This transforma-
tion takes transmission-line transformers into transmission-line lowpass
filters and vice versa, lowpass (or bandstop) filters into highpass (or band-
pass) filters and vice versa, and elliptic-function bandstop filters into
elliptic-function bandpass filters and vice versa. The practicality of the
transformation lies in the fact that element values of the transformed net-
work are easily related to the corresponding element values of the original
network. The transformation is useful because it provides an alternative
viewpoint for synthesis, and because it reduces the number of tables of
designs needed for various filter types. Several examples of designs using
the transformation are given. One design is an unusual narrowband 3-dB
directional coupler.

1. INTRODUCTION

REQUENCY transformations are commonly used in
Flumped-element network theory to convert a given

filter network into a related filter network. For exam-
ple, an often used frequency transformation is [1], [2]

s — As, (1

where the symbol — stands for “is replaced by,” 4 is a
constant, the primed variable is that of the original network,
and the unprimed variable is that of the transformed net-
work.! Transformation (1) is used to scale the bandwidth of
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1 Throughout this paper we shall use primed variables to represent
parameters of the original network and unprimed variables for those in
the tranformed network.

the existing network to another preferred value. Other com-
monly used frequency transformations in lumped filter
theory are [1], [2]

(lowpass to highpass @)

!
s’ A/s transformation)

, s “o (lowpass to bandpass 3)
§ow < wo T s transformation)

, 1
s (lowpass to bandstop 4)

w <i> + <ﬂ> transformation).
wWo 8

It is emphasized that in all cases the usefulness of these trans-
formations lies in the fact that their effects on the responses
of the network are easily related to changes in the element
values of the network. Because such frequency transforma-
tions are available, a given lowpass filter may function as a
prototype for a number of different types of filters, obviating
the compilation of a multitude of designs for lowpass, high-
pass, bandpass, and bandstop filters,

Analogous transformations would be equally useful for
commensurate transmission-line networks, if they could be
developed. For the special class of commensurate transmis-
sion-line networks consisting of open- and short-circuited
stubs, ideal transformers, and resistors, but without unit
elements [18] (i.e., quarter-wavelength lines), transforma-
tions (1) through (4) can indeed be used. In most cases, how-
ever, realization of commensurate transmission-line net-
works without unit elements is impractical or impossible.
Unfortunately, in the more general case of commensurate
transmission-line networks, consisting of open- and short-
circuited stubs, ideal transformers, resistors, and unit ele-
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ments, the usual frequency transformations of lumped-
clement network theory cannot be used. The fundamental
reason for this is that for transmission-line networks with
unit elements, the effects of the transformations on the net-
work responses are not easily (if at all) related to changes in
the element values of the network. However, an exception
to this statement is the frequency transformation?

S —1/8. (5)

It has been found that for this transformation the effects on
the network elements can be relatively easily accounted for.
This transformation corresponds to (2), with 4=1, and
possesses corresponding properties. However, its effects on
the parameters of transmission-line networks can be sub-
stantially different from the effects on the parameters of
lumped-element networks because of the existence of unit
elements. It is easily shown that transformation (5) takes
transmission-line filters into transmission-line transformers
and vice versa, lowpass distributed filters into highpass dis-
tributed filters and vice versa, elliptic-function bandstop
distributed filters into elliptic-function bandpass distributed
filters and vice versa. Sections II through IV investigate the
properties of transformation (5) and describe the relation-
ships between the original and the transformed networks.
Section V explores possible applications to which the trans-
formation may be put.

I1. THEORY

The general analytical properties of the complex trans-
formation

S —1/8 =W, (®)

which represents the inversion of the unit circle in the com-
plex plane, are not of particular interest in the present case.
The interested reader may find these details in various refer-
ences [4], [5]. Certain specific properties, however, should
be pointed out. On the real frequency axis, the variable

W=1/8= —jcotd @

satisfies

—jcot 6 = jtan (8 — 90), (8)

where 6 is the electrical length of the commensurate trans-
mission lines and j=+/—1. Thus transformation (6) is
equivalent to shifting the origin 90° to the right for all net-
work functions. The result of the translation can be seen to
be, for example, that response functions of lowpass (or band-
stop) networks become response functions of highpass (or
bandpass) networks. This is illustrated by the insertion-loss
functions shown in Figs. 1(a) and 1(b). Similarly, the re-
sponse functions of stepped-impedance filters are trans-
formed into the response functions of stepped-impedance
transformers; those of short-step transformers [6] are
transformed into the response functions of different short-

2 For commensurate transmission-line networks, the variable S’
represents tanf(vL), where + is the complex propagation constant and
L is the commensurate length of the transmission lines [3].
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(a). Lowpass (or bandstop) attenuation response.

ATTENUATION ——dB

8 — deg

(b). Highpass (or bandpass) attenuation response obtained by trans-
forming the response of Fig. 1(a) by the mapping S'=1/S.

Fig. 1.

step transformers; and those of bandstop elliptic-function
filters {7]-[9] are transformed into the response functions of
bandpass, elliptic-function filters.

Note in Fig. 1 that a narrowband bandstop filter response
transforms into a wideband bandpass filter response. Similar
results are obtained for quarter-wavelength transformers and
elliptic-function filters. The transformed bandwidths of
short-step transformers [6], on the other hand, behave differ-
ently. The general relationships between bandwidths of
original and transformed networks are derived later in
Section III; for the present, let us consider the general rela-
tionships between the electrical parameters of the original
and the transformed networks.

A. Networks of Only Commensurate Unit Elements

We consider first networks consisting of only unit ele-
ments, such as those represented in Fig. 2. Such networks
may represent stepped-impedance transformers, lowpass
filters, and prototype networks for directional couplers and
other filter types [10], [11]. Let the original network be
referred to as the S’-plane network and the transformed net-
work as the W-plane network. Also, let impedances in the S’
plane be primed and those in the W plane be unprimed.

Next, let an S’-plane network of unit elements be repre-
sented by the drawing of Fig. 3(a), so that the first unit ele-
ment is placed in evidence. The corresponding W-plane net-
work, yet to be determined, is similarly shown in Fig. 3(b).
The input impedance for the S’-plane network? is

Z(8) + S’Zl’}

Dnl3) =21 {Z{ + S'Z(S) ©

3 Input impedances (admittances) in the S’ plane will be denoted
with a bar. Input impedances (admittances) in the W plane will be
denoted without a bar.
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(b). General network of commensurate unit elements in the W plane,
with the first unit element in evidence.

Fig. 3.

By (6), the impedance in the W plane is the same function
Zi,, but in the variable W; hence

ZL(W) + Wz

Zin(W) = ZY {——:———
Z) + WZ(W)

} = Z(S) |y=w.  (10)

However, from first principles we know that the network of
Fig. 3(b) can also be represented by the equation

WZ.(W) + Z

ZwW)=2——-—,
Wz, + Z(W)

(11)

where the impedance of the unit element Z; and the imped-
ance Zy (W) are yet to be determined. Using Richard’s
theorem [3],

Zy' = Zin(8) |—1 = Ziu(1) (12)

and
Zy = Zu(W) [we1 = Zin(1); (13)

thus
Zy=Zy. (14)

Next, using Richard’s reduction procedure [3] for removing
unit elements,* we find that

i) - ¢ {520

S_“'Zin(s’) _ Zl’ = ZIIE(S’))

(15)

4 A factor 1—(S’)® cancels in the numerator and denominator of
(15) but is not shown here in order to keep the presentation simple. A
similar procedure applies for a factor 1 — W2 in (16).
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where the definition of G(S”) is clear from (15). Similarly,
from (11)

Zl - WZm(W)
Zi{Wy=2,——-——. 16
W) =ty —wa, =
However, since Z;=Z, (16) is equivalent to
Z,(W) = Z//GW), 17

where the function G in (17) is the same as that in (15) with
S’ replaced by W. Combining (15) and (17) gives the result

Zi(W) = (ZV/Z1(S) |s=w- (18)

The identity symbol in (18) is used to convey the meaning
that the functions on the left and right are identical but de-
noted in different variables. In words, (18) states that the
impedance function remaining in the W plane after removing
the first unit element is mathematically the same as the ad-
mittance function remaining in the S’ plane scaled by the
factor (Z/).

Next, steps (12) and (13) are repeated, with Z;,(S") re-
placed by Z.(S") and Z.(W) replaced by Zy(W)=(Z,)
/Z(W). We obtain for the second unit element in the S’
plane,

Zy = Z.(8) [s'=1 19)

and for the second unit element in the W plane,
Zs = Z1(W) lwer = @Y Z:(W)wer = (21)°74. (20)

Again using Richards’ reduction procedure, the remaining
impedance in the W plane is determined to be

Z1,(W) = (Z)(Y)?*Z1,(S") |7 (21)

Thus, at the end of the second cycle of determining the im-
pedances of the WW-plane network, the impedance function in
the W plane has returned to its original form [i.e., Zi.(W)
=Z:.(S")] except for a scale factor. A continuation of the
previous procedure gives, for the impedance in the W plane,
alternately ¥(S") and Z(S"), scaled by the appropriate fac-
tors. The general relationships between corresponding im-
pedances in the §” and W planes are thus

Z; = [ZYY)ZS) - - - (YE)]2Z! foriodd, (22)
and
Z; = [@HY(YINZS) - - - (Z1-)]PY! forieven. (23)

Equations (22) and (23) are equivalent to formulas for de-
signing half-wave filters from quarter-wave prototype
transformers [12]. We see from the previous discussion,
however, that these equations are completely general. They
apply to any arbitrary cascade of commensurate transmis-
sion lines, with the consequence that the network responses
in j tan 6 are replaced by the same responses in —j cot 6.

To illustrate an application of the foregoing theory, con-
sider the following example of the transformation of a two-
section short-step transformer [6] of the following specifica-
tions:
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(a). Attenuationresponse of two-section short-step transformer from
the tables of Matthaei.
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(b). Attenuation response of the transformed short-step transformer
under the transformation S’ =1/S.

Fig. 4.
Fractional bandwidth w' =1.2
Termination ratio r =2:1
Passband ripple L,'=0.39dB
Z/ =2.1956
Z,y =0.91091
Termination R; =2.0.

The attenuation response of this transformer is given in
Fig. 4(a), and the transformed attenuation response in the
variable 1/ is given in Fig. 4(b). The response shown in Fig.
4(b) implies that the short-step transformers go into other
short-step transformers under the transformation S'—1/S.
Thus, in some cases, the transformation (6) may be useful in
extending Matthaei’s tables, although no statement can be
made as to the generality of this particular application.

The transformed impedances in the W plane are calcu-
lated from (22) and (23), giving

Z1 = 2.1956
Zy = (Z,)*Yy = 5.2921
R: = [(Z/)(Y)]?Ry = 11.619.

For this example the new termination ratio is seen to be
11.619; and the new 0.39-dB fractional bandwidth, deter-
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mined from the data of Fig. 4(b), has been reduced to the
value w=0.403. Thus the resulting network is indeed another
short-step transformer.® To confirm these results, the re-
sponse of the W-plane network was calculated with a digital
computer and was found to agree with the response given
in Fig. 4(b).

B. Distributed Networks of Stubs, Unit Elements, Ideal
Transformers, and Resistors

The previous theory, developed for cascaded commensu-
rate unit clements, is extended in this section to networks
consisting of stubs, unit elements, ideal transformers, and
resistors. The technique for developing the transformed net-
work from the original network follows closely the concepts
presented in Section II-A. In order to facilitate the descrip-
tion of the method, however, it will be useful to digress
momentarily to examine the mathematical form of the
immittances of stubs in the variable W,

Four diagrams of open- and short-circuited stubs, in
series and in shunt with general networks, in both the S’
and W planes, are given in Fig. 5. By referring to this figure
during a network transformation problem, one can quickly
determine the type of stub called for in either the S’ or W
plane. For example, assume that in a filter transformation
problem, the impedance function

Zn(W) = 25.6W + Z(W)

occurs. Reference to Fig. 5(b) shows immediately that the
network is an open-circuited stub of characteristic imped-
ance 25.6 ohms in series with a residual network having in-
put impedance Z(W).

The method of transforming a given network in the S’
plane into another network in the # plane will be explained
by means of a worked example. After the example has been
given, certain general statements will be made that will en-
able a designer to transform one network into another
without recourse to most of the mathematics presented dur-
ing the description of the worked example. The example is
the transformation of a five-resonator bandstop filter, hav-
ing fractional bandwidth w'=1.00 and 0.1-dB Chebyshev
ripple in its passband, into a bandpass filter. The bandstop
filter is shown schematically in Fig. 6 with n=5. Normalized
values for network admittances 4 are given in reference [13].
The transformed network is developed in the following way.

The input admittance of the bandstop filter seen from the
left side of Fig. 6 is

Via(S) = b8 + Vu(S),

where V1(S’) is the admittance remaining to the right of the
first stub, Yy'.® Therefore, at the corresponding reference

(24)

¢ Because of the small termination ratio of the original transformer
(i.e., 2:1), the transformed network will have only a 0.5-dB insertion
loss at §=90°, Thus for this case the transformed network also repre-
sents a conventional transformer with termination ratio r=11.62,
0.5-dB equal-ripple response, and fractional bandwidth 1.64. However,
this situation occurs only when the original short-step transformer con-
sists of two sections and small termination ratio.

¢ For this example, input admitances in the S’ plane will be denoted
with a bar. Input admittances in the W plane will be without a bar.
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plane, the transformed network in the W plane has the ad-
mittance [set $'= W in (24)]

Yia(W) = LW + T(W). (25)

Reference to Fig. 5(c) shows that this admittance may be
represented by a short-circuited stub of characteristic ad-
mittance”

Hl = h1 (26)

in shunt with a residual network of input admittance ¥ (W).
The input admittance in the W plane, Y«(W), evidently
satisfies

Yi(W) = Ti(S) |graw @27)

where again, the identity sign is used to emphasize the fact
that the functions on the right and left of (27) are identical.

Now Vy(S") is the admittance seen when looking to the
right of the first stub of the bandstop filter. This admittance
is a unit element of characteristic admittance /1. terminated
in a load which will be designated as Yo(S"). Since Y«(W)
=7 (S), in the W plane we also have a unit element ter-
minated in a residual network. At this point in the develop-
ment of the transformed network, the situation is exactly
as that described in Section II-A. Hence, the unit element in
the W plane is evaluated using the procedures in Section
II-A, giving

ng = h12. (28)

Also, by the methods described in Section II-A [in particu-
lar (18)], the input impedance of the residual network in the
W plane satisfies

1
LN =70 |s
or
Zy(W) = To(S)/has? | s (29)

In words, (29) states that the input impedance of the remain-
ing network in the W plane is mathematically equivalent to
the input admittance of the remaining network in the S’
plane, scaled by the factor 1//:5%, and with S'replaced by W.

The development of the transformed network continues
from (29). The input admittance in the S’-plane network is
seen (from Fig. 6) to be an open-circuited stub in shunt with
a residual network, designated by ¥:(S’). Hence

V(S = koS + T5(S)). (30)
Thus from (29) we have
h V(W
oy = 2w 4 20 (31)

hio? has?

Reference to Fig. 5(b) shows that Z,( W) may be represented
by an open-circuited stub in series with a residual network

7 The characteristic admittances in the W plane will be denoted
by H.
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having an input impedance, designated as Zy(W), which
satisfies

V(W)
ZiW) = - : (32)
h122
The characteristic admittance of the open-circuited stub is
h122
Hy=—": 33)
Sy (

Further development of the transformed network con-
tinues along similar lines. The admittance T 4(S") is seen to
be that of a unit element of characteristic admittance hss,
terminated in a residual network designated as ¥ «(S”"). There-
fore, by (32), in the W plane the corresponding network may
also be represented by a unit element terminated in a residual
network. The evaluation of the unit element is

_rmy

w=1 h122 h122

= Zs(W)

(34)

23 wW=1

By the arguments put forth in Section II-A, the residual
network in the W plane, having input impedance Z(W),
satisfies

h23224 (S,)

Z4(W) = h 2
12

(35)

8'=Ww

In words, (35) states that the input impedance of the residual

s’ PLANE | W PLANE
‘ Zo/W
b3 Z(8) | z(w)

n

2,18)=2,5+2(8) Z,\W) = 2, /WHZIW)
(o) SERIES SHORT-CIRCUITED STUB

| J
Z,,(8) z(9) ‘ Z.W zZw)

Z,,(81=2,/S+ Z(S) Z,,(Whs Z W + Z(W)
{b) SERIES OPEN CIRCUITED STUB

Y, (S)E 5 Y(s) Y, (W)i 5 Y{w)
Yo/S

Y, (S) Y/S+Y(S) | Y, (W) YW+ Y (W)
{c) SHUNT SHORT- CIRCUITED sTUB

Y, (8) égv(s) Y, (W) ég Y(w)
Y,S Yo /W

Y]n(S) Y, S + Y(S) Y (W)=Y /W + Y (W)
{d) SHUNT OPEN- CIRCUITED STUB

Fig. 5. Four diagrams of open- and short-circuited stubs and their

mathematical forms in the §” plane and W plane.
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Fig. 7. Transmission-line bandpass filter developed from a bandstop filter using the frequency transformation §’=1/S.

network in the W plane is mathematically equivalent to the 50 4
input impedance of the residual network in the S’ plane,
scaled by the factor ha%/hi?, and with S’ replaced by W.

At this stage in the development of the transformed net-
work, the mathematics of the synthesis method has returned
to the starting point (24), except for a scaling factor fas2/A10%
The development of the remainder of the network follows
the same cycle that has just been described. The procedure S
is carried on by inverting (35) to obtain the input admittance
and following the steps beginning with (24).

A schematic of the final transformed network is given in
Fig. 7. Note that an ideal transformer is required at the 2~
right side of the network. This is because, after development
of the last stub in the transformed network, the residual re- 16 -
sistance satisfies -

Ri(W) = h15 heshss has?R(S") IS’=W (36)

where R;(S))=1/h,1. Hence the coefficient of R;(S’) in (36) s
corresponds to an ideal transformer, as shown in Fig. 7, N
with turns ratio R

N = his hoshsa has. (37)

36

32
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the transformed network are given as an example in the text.
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H=nh
H12 = hz
Hy = h122/h2

H23 = hlzz/hza

Hy = hyo%hes%hs

Hzy = hio®hes 2hae

Hy = h1s®has?hsd?/ha

H s = his?hes ?hadhes™!
Hjs = h1s%has %hahas%hs
N2 = hi1y 2hes*hss ?has?

Hg = hs. (38)
For the particular example just illustrated, the / parameters
of the original network satisfy certain symmetry conditions
[13] which, when taken into account, reduce (38) to

H, =h; = Hs

Hyy = hip = Hys

Hy = hi*/hy = H,
Hoyy = h19*/has = Hss
Hy = his®heshs
N=1

Hg = hs. (39

In order to verify the results given in (39), the network
given in Fig. 7 was analyzed on a computer using the rela-
tionships in (39) and the numerical data from reference [13].
The calculated insertion-loss function is shown in Fig. 8, and
it has been verified that this is the same insertion-loss func-
tion of the original bandstop filter, with S’ replaced by .

A brief review of the previously described transformation
procedure reveals a pattern that makes it unnecessary, in
most cases, to perform any of the previously outlined mathe-
matical steps. With a little practice, one can write down the
parameters of the transformed network by inspection. Note
that the requirement to renormalize and invert the residual
network immittance arises only after the removal of each
unit element. The removal of stubs, ideal transformers, and
resistors leaves intact the form of the residual network. Thus
the transformation of a given network by the mapping
S’—W can be accomplished as follows.

Unit elements in the transformed network are developed
according to the rules given in Section II-A, without regard
to the presence of stubs. The development of stubs in the
transformed network is divided into two cases:

1) If an odd number of unit elements has been developed,
shunt open- or short-circuited stubs are transformed
into series open- or short-circuited stubs (and vice
versa), respectively, with appropriate immittance scal-
ing.

2) If an even number of unit elements has been developed,
shunt open- or short-circuited stubs are transformed
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into shunt short- or open-circuited stubs, respectivelys
with appropriate immittance scaling; and series open-
or short-circuited stubs are transformed into series
short- or open-circuited stubs, respectively, with appro-
priate immittance scaling.

The “appropriate immittance scaling” referred to in 1) and
2) requires the factor (in terms of impedance)

[zyyyzy - - -Z/]2  foriodd, (40)

and

[Z;[I YQIZ3’ LR Yi’]Z fOI' ’I; even, (4:1)

where Z; and Y, are the impedance and admittance, re-
spectively, of the jth unit element of the S’-plane network.

C. Application to Distributed Elliptic-Function Filters

The theory presented in Sections II-A and II-B may also
be applied to elliptic-function filters [7]~[9]. In the general
case, elliptic-function filters may contain unit elements,
shunt and series open- and short-circuited stubs, distributed
LC shunt and series resonant and antiresonant sections, and
distributed nondegenerate Brune sections.® Networks of unit
elements and stubs have been discussed in Section 1I-B.
Where circuit elements of the network are LC series and
shunt resonant and antiresonant circuits, the extension of the
theory is straightforward. For example, if an even number
of unit elements has been developed in the transformed net-
work, a shunt, LC series resonant circuit will be transformed
into another shunt, LC series resonant circuit with the im-
pedance level appropriately scaled. On the other hand, if an
odd number of unit elements has been developed in the
transformed network, a shunt, L.C series resonant circuit
will be transformed into a series, antiresonant circuit with
the impedance level appropriately scaled. Extension to other
types of LC circuits is obvious.

Application of the theory to Brune sections reveals that
a Brune section transforms into another Brune section.
Again, there are two cases to consider, depending on whether
an even or odd number of unit elements has been developed
in the transformed network. The transformation of a Brune
section after an odd number of unit elements has been de-
veloped is shown in Fig. 9(a). In this figure, and also in Fig.
9(b), the §’-plane Brune section is shown in the T-section
form. This is easily related, by elementary transformations
(14], to the form which uses unity-coupled coils. The re-
quired impedance scaling factors have been neglected in the
figures and must be supplied in the actual application. The
particular form of the transformed Brune section shown in
Fig. 9(a) has been given by Guillemin [14]. Other equivalent
circuits are possible, but they are not presented here. The
transformation of a Brune section after an even number of
unit elements has been developed is shown in Fig. 9(b).

8 In the present context L represents the characteristic impedance of
a quarter-wave short-circuited transmission line, and C represents the
characteristic admittance of a quarter-wave open-circuited transmission
line.
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(a). Transformation of a Brune section after an odd number of unit
elements has been developed. (Impedance scaling has been neglected.)
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(b). Transformation of a Brune section after an even number of unit
elements has been developed. (Impedance scaling has been neglected.)

Fig. 9.

I1I. BANDWIDTH FORMULAS

The effect of the transformation $'—1/S on bandwidth
can be determined using (8). Let 6,” and 6" be the upper and
lower bandedges, respectively, of a given network response
in the S’ plane. Let the fractional bandwidth of the network

be defined as

w =20 (42)
8, + 6/
There are two cases to consider:
Case 1: Both 6y and 6, lie between 0 and 90°.°
Case 2: 9,/ =180°—¢y.
Case 1
Under the transformation S’—1/.S, the new bandedges are
6 = 90° — 6/,
6; = 90° — 6.

Therefore, in the W plane the fractional bandwidth is

02 — 01 0zl — 01,
w=2 { } o { } (43)
8, + 6, 180 — (02' + 6/)

which reduces to
90°
. (44)

w 02/ — 01,

1 1

g

9 An example of a Case 1 network is the short-step transformer [6].
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Case 2
Under the transformation $’—1/5S, the new bandedges are
02 = 900 + 01’,
91 = 02, _ 900.
Therefore, in the W plane the fractional bandwidth is

9, — 6 180 — (8 — 6y
w=2{2 ‘}=2{ (. 1)}, (45)
0, 1+ 0, 6y + 65

which reduces to

w+w = 2. (46)
1V. FOUR THEOREMS FOR SYMMETRICAL
AND ANTIMETRICAL FILTERS

Define a symmetrical filter as one with impedances that
satisfy

Zn,+1_,' = T’Zi,, (47)
where Z,' is the impedance of the ith stub or unit element
normalized to the generator resistance, # is the total number
of stubs and unit elements in the filter, and #’ is the ratio of
termination to generator resistance. Define an antimetrical
filter as one with impedances that satisfy

Zijr-i = (48)

Then the following four theorems can be stated:

Theorem 1: Under the transformation S'—1/S, a sym-
metrical filter having M unit elements, where M is even,
goes into another symmetrical filter with respect to the trans-
formed normalized load r. The transformed normalized
load r is equal to 7 if M/2 is even, and is equal to 1/ if
M/2 is odd.

Theorem 2: Under the transformation $'—1/S, a sym-
metrical filter having M unit elements, where M is odd, goes
into an antimetrical filter with respect to the new normalized
load . The normalized load r satisfies

Z/ _ 4 YI 2
p=(zovime I (TR) @

for [(M+1)/2] even, and

Y 31 4<Z'M+1>2
— Z IY IZ oL P —_
r ( 1 Lo 4s 9 > 5

for [(M+41)/2] odd.
The notation Z; represents the jth unit element of the

S’-plane network.

Theorem 3: Under the transformation S'—1/8, an anti-
metrical filter having M unit elements, where M is odd, goes
into a symmetrical filter. The transformed normalized ter-

mination r is unity for all cases.

(50)
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Theorem 4: Under the transformation S$'—1/S, an anti-
metrical filter having M unit elements, where M is even, goes
into another antimetrical filter with respect to the new
normalized termination ». The normalized termination r
satisfies

Zuw'\ 1
r = <Z1,Y2’Z3, L —JW—)— (51)
2/
for M/2 odd, and
Y’ \*
r = <Z1, Y2,Z3, .. 3) 7" (52)

for M/2 even.

It is emphasized that the preceding theorems are based
only on the number of unit elements in the filter and depend
in no way on the number of stubs, transformers, or resistors.

V. APPLICATIONS
A. Extension of Chebyshev Transformer Tables

A potential application for the transformation $'—1/S is
the extension of Chebyshev transformer tables [12] by using
Levy’s tables for distributed lowpass filters [11]. Published
tables of exact designs of Chebyshev transformers [12] are
presently limited to four sections and impedance ratios of
<100. Although the range of impedance ratios covered is
probably adequate for most applications, it would be useful
to have tables for larger numbers of sections. Levy’s tables
of distributed filters may be useful for this purpose in some
instances.

For example, suppose it is required to match into a net-
work over a 3:1 bandwidth, i.e., w'=1.0. Let the input im-
pedance of the network be 15 times the source impedance,
and let it also be required that the VSWR of the match be
<1.05. A 15:1 impedance mismatch ratio corresponds to a
maximum insertion loss of 6.28 dB. Therefore, upon scan-
ning the tables of distributed lowpass filters [11] for a design
with a maximum insertion loss of 6.3 dB and a passband
VSWR of 1.05, it is found that a five-section filter is required.
This particular filter has 6.22-dB insertion loss, which cor-
responds to an impedance mismatch of 14.6:1. The band-
width of this filter is w’=0.9. By (46), the bandwidth of the
transformed network will be w=1.1, which fulfills the re-
quirements. The impedances of the transformed network
can be calculated from (22) and (23), giving

Z, = 1193
Zy = (1.193)2/(0.7481) = 1.902
~(1.193)2(1.507)

3.832
(0.7481)2
14.6
4 = == 7676
2
14.6
5 = = 12.23.

3
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Similar methods are also applicable to the tables of short-
step transformers [6], as shown by the example given in
Section II-A.

B. Development of Narrowband Directional Coupler

From time to time, technical problems arise in which nar-
rowband directional couplers prove to be more useful than
wideband directional couplers. In the following example a
narrowband 3-dB (approximately) directional coupler is
developed using the transformation S’—1/S. The stepped-
impedance TEM directional coupler has been shown to be
mathematically equivalent to the stepped-impedance filter
terminated in a 1-ohm resistor [15], [16]. The reflection
coefficient and the insertion loss of the stepped-impedance
filter correspond to the coupling and transmission, respec-
tively, of the directional coupler. A 3-dB directional coupler
thus corresponds to a stepped-impedance filter with 3-dB
insertion loss. On the other hand, under the transformation
S’—1/8 a stepped-impedance filter with 3-dB insertion loss
corresponds to a transformer with 5.83:1 termination ratio.
The tables of transformer design [10] give the following im-
pedance values for a three-section transformer with termina-
tion ratio 6:1 and fractional bandwidth w'=1.2:

7y = 1.58676
7y = 2.4495
Zy = 3.78129.

Transforming these impedances according to (22) and (23)
gives the following impedance values of the stepped-imped-
ance filter. These impedances are also the even-mode
impedances of the directional coupler [19].

Z1 = 1.58676 = Zg_oven,
Zs = 102789 = Zo_cven,
Z3 = 158676 = ZO-eveng-

Note that an unusual feature of this 3-dB coupler design is
that the tightest coupling is at the ends of the coupler, as
contrasted to the middle in conventional designs.'® The
coupling of the ends is

, 72 — 1
couphng = 20 logm {m}
201 {1 '51} 7.30 dB
= o — = =1 .
50 351

Thus a second unusual feature of this design is that the
tightest coupling is less than the overall coupling of the
coupler. Important also is the fact that since the tightest
coupling is only —7.3 dB, this coupler should be relatively
easy to construct. The coupling response is shown in Fig. 10.
The peak coupling is —2.92 dB, and the 3-dB fractional
bandwidth has been determined from the data to be w=0.233.

10 Since the even-mode impedances Z3 and Z; are greater than Z,.
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Fig. 10. Coupling response of 3-dB directional coupler designed using
the transformation S’ =1/S.

C. Transformation of Bandstop Filters into Bandpass Filiers

Perhaps the most general application of the transforma-
tion $'—1/8 will be the transformation of bandstop filters
into bandpass filters (and vice versa). This application will
realize a saving of 50 percent in the compilation of filter-
design tables. For example, the existing tables of bandstop
filters [13] are easily transformed into tables for bandpass
filters. This was done for a limited number of cases in order
to gain an impression of the impedance levels of the result-
ing bandpass filters. It was found that for a representative
case (a five-stub filter with 1.2 VSWR ripple in the pass-
band) the transformed impedances lay in the range 10 to 250
ohms over fractional bandwidths of 0.8 to 1.5. For band-
widths less than 0.8 or greater than 1.5, special methods of
design (such as use of additional redundant unit elements)
[17] will be required for practical realizations.

It should be pointed out that for filters having lumped-
element prototypes [13], it is not necessary to use the trans-
formation S’—1/S on the transmission-line filter. One can
apply it to the lumped-element prototype as well, utilizing
Kuroda’s identities to realize the transmission-line filter.™
It is most important to note, however, that for the classes of
filters having no lumped-element prototype (such as are repre-
sented by the insertion-loss functions given in reference [17]),
transformation from bandpass to bandstop (or vice versa) can
be accomplished only by the techniques given in Section II or
by exact synthesis methods.

VI. CONCLUSIONS

A theoretical study has shown that the frequency trans-
formation $’—1/S ,when applied to commensurate trans-
mission-line networks of stubs, unit clements, ideal trans-
formers, and resistors, may be easily related to changes in
the impedance values of the network parameters. In most
cases, both the form and the element values of the trans-

11 However, in many cases, it will probably be faster to use the com-
putational algorithm [13] in designing the corresponding bandstop
filters, or the tables [13], and then convert the design to a bandpass
filter by the transformation $’—1/S.
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formed network may be written down from inspection. Be-
cause of the generality of the transformation, only a few
examples could be illustrated in the present paper. However,
the fundamental transformation technique applies to a wide
variety of situations. The transformation will probably be
most useful in reducing the number of design tables required
for frequently used filter designs. However, in some cases it
may also be helpful in extending existing tables of designs.
Knowledge of the transformation also provides an alterna-
tive viewpoint to various network synthesis problems, as
exemplified by the design of the narrowband 3-dB direc-
tional coupler. Also, for some network synthesis problems
it may prove useful to work in the W plane rather than the
S’ plane and then transform the resulting network. For
example, retention of significant figures in an electronic
digital computer may be a problem in synthesizing narrow-
band bandpass filters, but it may not be a problem in
synthesizing wideband bandstop filters. Thus the latter could
be accomplished and the network transformed thereafter.

REFERENCES

[1] N. Balabanian, Network Synthesis. Englewood Cliffs, N. J.:
Prentice-Hall, 1958, pp. 411-414.

[2] E. A. Guillemin, Synthesis of Passive Networks. New York:
Wiley, 1957, pp. 602-607.

[3] P. I. Richards, “Resistor-transmission-line circuits,” Proc. IRE,
vol. 36, pp. 217-220, February 1948.

[4] R. V. Churchill, Introduction to Complex Variables and Applica-
tions. New York: McGraw-Hill, 1948.

[51 W. Kaplan, Advanced Calculus. Reading, Mass.: Addison-
Wesley, 1957, ch. 9.

[6] G.L. Matthaei, “Short-step Chebyshev impedance transformers,”
IEEE Trans. on Microwave Theory and Technigues, vol. MTT-14,
pp. 372-383, August 1966.

[71 J. O. Scanlan and J. D. Rhodes, “Cascade synthesis of distributed
networks,” presented at Polytechnic Institute of Brooklyn Inter-
nat’l Symp. on Generalized Networks, New York, April 1966.

[8] R. Levy and I. Whitley, “Synthesis of distributed elliptic-function
filters from lumped-constant prototypes,” 1966 Internar’l Micro-
wave Symp. Digest, pp. 83-89.

[9] M. C. Horton and R. J. Wenzel, “Realization of microwave
filters with equal ripple response in both pass and stop band,”
presented at Polytechnic Institute of Brooklyn Internat’l Symp. on
Generalized Networks, New York, April 1966.

[10]1 G. L. Matthaei, L. Young, and E. M. T. Jones, Design of Micro-
wave Filters, Impedance Matching Networks, and Coupling Struc-
tures. New York: McGraw-Hill, 1964, ch. 6.

[11] R. Levy, “Tables of element values for the distributed low-pass
prototype filter,” IEEE Trans. on Microwave Theory and Tech-
niques, vol. MTT-13, pp. 514-536, September 1965.

[12] G. L. Matthaei, L. Young, and E. M. T. Jones, op. cit., p. 279.

[13] E. G. Cristal, “Addendum to ‘An exact method for synthesis of
microwave bandstop filters,” > IEEE Trans. on Microwave Theory
and Technigues (Correspondence), vol. MTT-12, pp. 369382, May
1964.

[14] E. A. Guillemin, op. cit., pp. 343-356,

[15]1 A. L. Feldstein, “Synthesis of stepped directional couplers,”
Radiotekh. i Elektron., vol. 6, pp. 234-240, February 196l.
English transl. by Pergamon, New York, pp. 74-85.

[16] L. Young, “The analytical equivalence of TEM-mode directional
couplers and transmission-line stepped-impedance filters,” Proc.
IEE (London), vol. 110, pp. 275-281, February 1963.

[17] M. C. Horton and R, J. Wenzel, “General theory and design of
optimum quarter-wave TEM filters,” IEEE Trans. on Microwave
Theory and Techniques, vol. MTT-13, pp. 316-327, May 1965.

[18] H. Ozaki and J. Ishii, “Synthesis of transmission-line networks
and the design of UHF filters,” IRE Trans. on Circuit Theory,
vol. CT-2, pp. 325-336, December 1955.

[19]1 E. M. T. Jones and J. R. Bolljahn, “Coupled-strip-transmission-
line filters and directional couplers,” IRE Trans. on Microwave
Theory and Technigues, vol. MTT-4, pp. 75-81, April 1956.



